Lesson 2.05 - "On Your Own" Worksheet

Name: Kly

- 6.) Use the figure at right. Find the measures of $\angle BDA$, $\angle ADQ$, and $\angle CDQ$ for the following conditions.
 - a.) If $m \angle BDC = 62^{\circ}$, then:

$$m \angle BDA = \frac{118^{\circ}}{m \angle ADQ} = \frac{67^{\circ}}{118^{\circ}}$$
$$m \angle CDQ = \frac{118^{\circ}}{m \angle CDQ} = \frac{118^{\circ}}{m \angle CDQ}$$

b.) If $m \angle BDC = 72^{\circ}$, then:

$$m \angle BDA = \frac{10 \%}{m \angle ADQ} = \frac{12 \%}{m \angle CDQ} = \frac{10 \%}{m \angle CDQ}$$

c.) If $m \angle BDC = 55^{\circ}$, then:

$$m \angle BDA = \frac{125^{\circ}}{m \angle ADQ} = \frac{55^{\circ}}{m \angle CDQ} = \frac{125^{\circ}}{m \angle CDQ}$$

d.) If $m \angle BDC = x^{\circ}$, then:

$$m \angle BDA = \frac{180^{\circ} - X}{m \angle ADQ} = \frac{X^{\circ}}{180^{\circ} - X}$$
$$m \angle CDQ = \frac{180^{\circ} - X}{m \angle CDQ}$$

Use a straight edge to draw line ℓ . Draw a point P not on line ℓ .

7.) How many lines could you draw that are parallel to line *l* that pass through point *P*? Explain how you know.

There is only one line that passes through point P and is parallel to line I. Any other line that passes through point P would intersect line I.

8.) How many lines could you draw that are perpendicular to line *l* that pass through point *P*? *Explain* how you know.

There is only one line that passes through point P that is perpendicular to line l. All other lines passing through point P would not be perpendicular to line l.

- 9a.) Use your straightedge to draw a line through point *P* that is perpendicual to line *l*. Label the new line as line *n*.
- 9b.) Use your straightedge to draw a line through point P that is perpendicular to line n. Label the new line as line m.
- 9c.) Where will line I and line m intersect? Explain your answer.

 Lines m and l will never intersect. They are parallel Because they are both 1 to the same line, they must be parallel.